Antifungal activity of nano-composite films based on Poly Lactic Acid

Authors

  • Mahsa Tabari Department of Food Sciences and Technology, Faculty of Agriculture, Lahijan Branch, Islamic Azad University, Lahijan, Iran
  • Mahya Shafiee Nasab Agricultural Engineering-Food Sciences and Industries, Islamic Azad University, Tehran North Branch, Tehran, Iran
  • Sirus Bidarigh Department of Agriculture, Lahijan branch, Islamic Azad University of Iran
Abstract:

Objective(s): Nanocomposite active packaging systems were used to prepare antimicrobial and antifungal properties. This study was to investigate the physical and antimicrobial activity of prepared films against three types of aflatoxin producing fungi Aspergillus Flavus. Material and methods: For investigating the effect of antibacterial nano-covers, the direct contact of 0, 1%, 3% and 5% zinc oxide nanoparticles was contaminated with standard strains of three types of Aspergillus Flavus (PTCC 5004), Aspergillus Parasiticus (PTCC 5286) and Aspergillus Parasiticus (PTCC5018) provided. Pistachios were coated by edible films then peroxid index gradient were measured during the time for coating Pistachios containing different concentrations of 0, 1 and 3% of “nano-ZnO”. Then coating pistachios were preserved inside sealed Polyethylene bags for six months and the effect of preventing fungal growth during the time were investigated. Results: The study of antifungal properties of films on three Aspergillus spp. showed that all four percent of nano zinc oxides in this study has inhibitory effect by increasing the percentage of nano-materials significantly (P <0.05). Poly lactic acid edible films Containing 5% nanoparticles has appropriate coating with anti-oxidation agent. Nano-coating Pistachios were observed any growth of mold, however, growth was observed in all control samples. Conclusion: Poly lactic acid films containing nano-zinc oxide show a high potential for antifungal pistachios packaging applications to enhance the shelf life of this products.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of na...

full text

Novel silicon dioxide -based nanocomposites as an antimicrobial in poly (lactic acid) nanocomposites films

Objective(s): Due to nanocomposites antimicrobial properties, one of the most extensive usages of nano-products is in packing industry. Thus, the production of packages with nanotechnology can effectively prevent against a variety of microorganisms. In this study, the silicon dioxide nanoparticles the poly (lactic acid) PLA films on antimicrobial and permeability was investigated. Methods...

full text

Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.

To determine the optimal ratio of nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) in the novel three-dimensional porous PLLA/n-HA composite scaffolds, low-temperature rapid prototyping technology was employed to fabricate the composite materials with different n-HA contents. Mechanical properties and degradation behaviors of the composites were examined, and the scaffold microstructure and...

full text

Morphological and mechanical properties of Poly (lactic Acid) /zinc oxide nanocomposite films

Objective(s): Nowadays, tendency to use green materials can reduce environmental pollution and plastic waste. Poly (lactic Acid) PLA is one of the natural biodegradable polymers mainly used in the production of bioplastics for packaging which is made of non-toxic compounds and is easily biodegradable. In this research, the effect of 1, 3 and 5% nanocomposite zinc oxide on the morphological, mec...

full text

Antimicrobial properties and permeability of Poly lactic Acid nanocomposite films containing Zinc Oxide

Objective(s): Since microbial contamination can reduce the shelf life of the foodstuff and there is a potential for the growth of some pathogen microorganisms, films containing antimicrobial agents were produced, which are also biodegradable. In this study, the effect of 1, 3 and 5% nano-zinc oxide on antimicrobial properties and permeability of poly lactic acid film was invest...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 3

pages  186- 192

publication date 2019-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023